Theoretical rotational–vibrational spectra of the X^3B_1 **,** a^1A_1 and b^1B_1 states of NH₂^{**}

G. Chambaud^{1,**}, W. Gabriel¹, T. Schmelz¹, P. Rosmus¹, A. Spielfiedel², and N. Feautrier²

¹ Fachbereich Chemie der Universität D-60439 Frankfurt, Germany 20bservatoire de Paris, DAMAp, F-92195 Meudon, France

Received November 30, 1992/Accepted February 24, 1993

Summary. The three-dimensional potential energy functions have been calculated from highly correlated multireference configuration interaction electronic wavefunctions for the X^3B_1 , a^1A_1 , and b^1B_1 states of the NH⁺ ion. For the quasi-linear electronic ground state this information and the electric dipole moment functions have been used to calculate spectroscopic constants, line intensities and rotationally resolved absorption spectra. For the $a¹A₁-b¹B₁$ bent/quasi-linear Renner-Teller system ro-vibronic energy levels have been obtained from a variational approach accounting for anharmonicity, rotation-vibration and electronic angular momenta coupling effects. The vibronic levels are given for energies up to 13500 cm⁻¹ for the bending levels and up to 8000 cm⁻¹ for the stretching and combination levels.

Key words: Potential energy functions $-NH₂⁺ - Rotational-vibrational spectra$

1 Introduction

Theoretical calculations predicted the $NH₂⁺$ ion to be quasi-linear with a very low potential barrier at linearity $[1, 2]$. To date, the geometric structure and an unequivocal experimental evidence of the quasi-linearity has not been known. The only high resolution study of NH_2^+ has been published by Okumura, Rehfuss, Dinelli, Bawendi, and Oka [3], who investigated the v_3 band in direct absorption using a tunable difference frequency laser spectrometer. The band origin was found to be $v_3 = 3359.932 \text{ cm}^{-1}$. Very recently, four new hot bands involving the excitation of v_1 and/or v_2 have been recorded and assigned by Huet, Kabbadj, Gabrys, and Oka [4]. Dunlavey, Dyke, Jonathan, and Morris [5] observed the photoelectron spectrum of the NH₂ radical and found for the ion $v_2 = 840 + 50 \text{ cm}^{-1}$. Herzberg [6] detected emission lines from ammonia ionized by collisions with low energy electrons, which he tentatively assigned to the $NH₂⁺$ spectrum.

^{*} Dedicated in the honor of Prof. Werner Kutzelnigg

^{**} Permanent address: Université de Marne la Vallée, Départment Matériaux, F-93160 Noisy le Grand, France

As in the case of isoelectronic CH₂, the first two low-lying singlet states, $a¹A₁$ and b^1B_1 become a degenerate 1A_g state at linearity and, therefore, both electronic states are coupled by the Renner-Teller effect. For $CH₂$ more than 10000 transitions within these first two Renner-Teller singlet states have been measured [7] and partly assigned, but no such transitions have yet been detected for NH_2^+ .

There have been several *ab initio* studies of NH_2^+ . Peyerimhoff und Buenker [2] calculated many properties of the lowest fourteen electronic states of $NH₂⁺$. Later, Peric, Buenker, and Peyerimhoff [8] dealt with the electron-nuclear motion coupling problem in the first electronically excited $^{1}A_{1}$ and $^{1}B_{1}$ states. They employed the theoretical MRD-CI potential energy functions in a variational method which took into account the Renner-Teller coupling and the large amplitude bending motion in an effective one-dimensional Hamiltonian. DeFrees and McLean [9] calculated vibrational harmonic frequencies of $NH₂⁺$ in its ground state. So far, the most accurate theoretical study of the spectroscopic data for $NH₂⁺$ has been published by Jensen, Bunker, and McLean [1]. They calculated the potential energy functions (PEFs) of the three lowest electronic states and obtained rotation-vibration energies for two of these states. The Renner-Teller coupling in the singlet states has been neglected.

For $CH₂$, extensive calculations have been made and it has become the benchmark triatomic species for testing *ab initio* quantum chemistry methods (for the Renner-Teller problem in CH_2 and review of the previous works cf. Ref. [10]). Similarly, the isoelectronic NH_2^+ ion, with its six valence electrons, represents an electronic problem small enough to be treated with high precision. In the present work such extensive electronic structure calculations have been employed to obtain three-dimensional potential energy and electric dipole moment functions, spectroscopic constants, absolute line intensities and rotationally resolved spectra.

2 Electronic structure calculation

In the electronic structure calculations we have used two different basis sets. The larger basis set [B1] consisted of the correlation consistent *(14s8p4d3f2g)* basis set of Dunning E111 contracted to *[6s5p4d3f2g]* according to the general contraction scheme for N and of the corresponding *(6s3p2dlf)* basis set for H contracted to *[4s3p2dlf].* The total number of contracted Gaussian functions was 140. The second basis set [B₂] consisted of the $(12s6p3d2f)$ [11] contracted to [5s4p3d2f] according to the general contraction scheme for N and of the corresponding *(6s3p2d)* basis set for H contracted to *[4s3p2dl.* In this case the total number of contracted Gaussian functions was 92.

The near-equilibrium PEFs for the X^3B_1 , a^1A_1 , and b^1B_1 states were mapped for 150 geometries with both basis sets for bond lengths 1.55 bohr $\langle R_{\text{NH}} \rangle$ 3.00 bohr and included angle $75^{\circ} < \alpha < 180^{\circ}$ by a multireference internally contracted configuration interaction (MRCI) [12-151 approach using the MOLPRO code [16]. The reference wavefunctions and the correlation orbitals were obtained from complete active space self-consistent field (CASSCF) calculations with active space comprising all valence orbitals; the core (ls of N) orbital was kept doubly occupied in all configurations. At the CASSCF level the X^3B_1 (A") state has been calculated alone and the ¹ A_1 (A') and ¹ B_1 (A'') states were optimized together in a stateaveraged procedure; each component having the same weight. For structures in C_s symmetries this resulted in 99 CSF's for the $3A''$ state, 100 CSF's for the $1A'$ and 75 CSF's for the $^{1}A''$ states. The reference wavefunctions in the MRCI calculations

comprised all the configurations of the CASSCF calculation. The core electrons were not correlated. The electric dipole moments were calculated as expectation values.

3 Potential energy and dipole moment functions

The calculated total MRCI energies of the three electronic states for 150 nearequilibrium geometries were fitted by polynomial functions:

$$
V(R_1, R_2, \alpha) = \sum_{ijk} C_{ijk} (q_1)^i (q_2)^j (q_3)^k,
$$

in the bond lengths R_1 , R_2 and the included bond angle α . The coordinates q_1 and q_2 were Simon-Parr-Finlan coordinates of the form $q_i = 1 - R^{ref}/R_i$. For q_3 the displacement coordinate ($\alpha - \alpha^{ref}$) was used. In our fits of the three PEF's the root **mean squares were less than 2 cm- 1. Only the expansion coefficients of the PEF's** obtained with a large basis set $[B_1]$ are given in Table 1, the results calculated with

Table 1. Expansion coefficients of the three-dimensional near equilibrium PEFs of the three lowest electronic states of NH_2^+ (in a.u.)

X^3B_1 state ^a				
C_{000} C_{110} :	-55.4346987 -0.0240565	0.0067603 C_{100} : 0.0051808 C_{101} :	0.0007056 C_{001} : 0.0163100 C_{002}	0.7694751 C_{200} : -0.1674700 C_{300}
C_{210} :	-0.0131014 -0.0297731	-0.0029595 C_{201} : -0.3035577	-0.0097988 C_{111} : -0.0163155	-0.0090767 C_{102} : -0.0580796
C_{003} : C_{301} :	-0.0201707	C_{400} : -0.0053209 C_{211} :	C_{310} : -0.0208717 C_{202} :	C_{220} : 0.0374995 C_{112} :
C_{103} : C_{320} :	0.0087475 -0.0803918	0.0033145 C_{004} -0.0586619 C_{401} :	-0.1219646 C_{500} : 0.0848294 C_{311} :	C_{410} : 0.0230236 -0.0549291 C_{221} :
C_{302} : C_{104} :	0.0114040 -0.0043093	-0.0098973 C_{212} : 0.0068723 C_{005} :	0.0188437 C_{203} : 0.0691383 C_{600}	-0.0064798 C_{113} : 0.3176133 C_{510} :
C_{420} : C_{321} :	0.1722048 -0.1283185	-0.5094763 C_{330} : 0.0621450 C_{402} :	-0.0980143 C_{501} : -0.0440334 C_{312} :	0.3042142 C_{411} : -0.0394200 C_{222} :
C_{303} : C_{105} :	0.0240131 -0.0023306	0.0036048 C_{213} : 0.0024627 C_{006}	0.0471765 C_{204} :	-0.0920737 C_{114} :
a^1A_1 state ^b				
C_{000} :	-55.3882786	0.0001106 C_{100} :	0.0000047 C_{001} :	0.7337182 C_{200} :
C_{110} :	-0.0057245	0.0414585 C_{101} :	0.0665835 C_{002} :	-0.1659903 C_{300} :
C_{210} :	-0.0029749	0.0260878 C_{201} :	-0.0796721 C_{111} :	C_{102} -0.0339958
C_{003}	-0.0310118	-0.3482419 C_{400} :	-0.1494518 C_{310} :	0.2644391 C_{220} :
C_{301} :	-0.0538683	-0.0039857 C_{211} :	-0.0327394 C_{202} :	0.1128163 C_{112} :
C_{103} :	0.0263036	-0.0158865 $C_{0.04}$:	-0.0899358 C_{500}	-1.0367294 C_{410} :
C_{320} :	0.8559873	-0.2061575 C_{401} :	0.3903738 C_{311} :	-0.3783757 C_{221} :
C_{302} :	0.0863695	0.1512236 C_{212} :	0.0136437 C_{203} :	-0.0387548 C_{113} :
C_{104} :	-0.0052160	-0.0055623 C_{005}	0.0859523 C_{600} :	-1.8198532 C_{510} :
C_{420} :	0.0607169	2.9002743 C_{330} :	-0.1266676 C_{501} :	1.0703439 C_{411} :
C_{321} :	-1.1570981	0.2129615 C_{402} :	-0.0930154 C_{312} :	-0.0577043 C_{222} :
C_{303} : C_{105} :	-0.0471381 -0.0031308	-0.1258768 C_{213} : 0.0094902 C_{006} :	0.0027785 C_{204} :	-0.0120508 C_{114} :

Table 1. Continued

a R₁^{et} = R₂^{et} = 1.9538 bohr, α ^{ref} = 153.170°, $C_{ijk} = C_{jik}$.

b R₁^e = R₁^e^f = 1.9774 bohr, α ^{ref} = 108.386°, $C_{ijk} = C_{jik}$. ϵ R^{ref} = R^{ref} = 1.9440 bohr, $\alpha^{ref} = 160.920^{\circ}$, $C_{ijk} = C_{ijk}$.

Table 2. Expansion coefficients of the three-dimensional near equilibrium dipole moment functions of the X^3B_1 electronic ground state^a of NH₂⁺ (in a.u.)

z-component ^b							
C_{000} : .00000 C_{300} : $- .02509$ C_{400} : $- .01827$ C_{202} : $- .02774$	C_{100} ; .51869 C_{210} : -0.01409 C_{310} : $- .00033$ C_{103} : - .10859	.12913 C_{200} : C_{201} : .03991 C_{301} : $-$ 01662	C_{101} : .20812 C_{102} : -13179 C_{211} : .01426				
x -component ^{c}							
.26687 C_{000} : C_{110} : $- .03386$ C_{210} : - .01138 .01554 $C_{0.03}$: .00927 C_{301} : .01386 C_{103}	C_{100} : 12019 C_{101} : $- .23887$ C_{201} : $- .06642$ C_{400} : $- .00084$ C_{211} : .02345 .02065 $C_{0.04}$:	C_{001} : - 49812 C_{002} : $- .11475$.07249 C_{111} : C_{310} : .00027 .00897 C_{202} :	C_{200} : .03126 C_{300} : $- .00487$ C_{102} : -0.02238 C_{220} : $- .00124$ C_{112} : $- .00766$				

 $R_1^{\text{ref}} = R_2^{\text{ref}} = 1.9453$ bohr, $\alpha^{\text{ref}} = 152.074^{\circ}$.

 b $C_{ijk} = -C_{jik}$.

 $^{c}C_{ijk} = C_{jik}.$

a smaller basis set $[B_2]$ will be discussed in the next section. These analytic functions define the PEFs of NH₂ in the geometry range of about 1.55 $\lt R_{NH}$ $<$ 2.55 bohr and 80° $< \alpha$ $<$ 180°. The dipole moment values have been trans formed to the center of mass and fitted to similar polynomial expansions as the PEFs. In this case all three coordinates were the displacement coordinates

 $(R_i - R^{\text{ref}})$ or $(\alpha - \alpha^{\text{ref}})$. The expansion coefficients of these functions are given in Table 2.

One-dimensional cuts of the MRCI PEFs along the bending coordinate are displayed in Fig. 1. It shows that the triplet ground state and the second singlet state have only very small barriers to linearity, smaller than in the isoelectronic CH₂ [10]. The two singlet states correlate with a $^{1}A_{a}$ state at linearity, i.e. the nuclear and electron motion can not be treated separately, both states are coupled by the Renner-Teller effect.

In linear structures the ¹ Λ state crosses with the ¹ Π state since the ¹ Λ state correlates diabatically with the $NH(^1\Delta) + H^+$ asymptote, whereas the $NH⁺(² Π) + H asymptote – which lies energetically lower – correlates with the ¹ $\Pi$$ states. In additional calculations it was found that the crossing of both states in linear geometries occurs for fixed $R_1 = 1.9538$ bohr at about $R_2 = 4.25$ bohr and around 37 000 cm⁻¹ above the minimum energy of the $a¹A₁$ state. Peyerimhoff and Buenker [21 found another conical intersection resulting from the crossing of the 1_A_2 and b_1B_1 states for angles close to 70 degrees and $R_1 = R_2 = 1.9407$ bohr. This crossing occurs around 35 000 cm⁻¹ above the minimum of the $a¹A₁$ state. Both regions of the conical intersections on the PEFs of the lowest two singlet states will, therefore, not influence the vibronic states lying below 15 000 cm⁻¹, which are of interest in the present work.

4 Ro-vibrational spectrum of the electronic ground state X^3B_1

Variational calculations for the rotational-vibrational levels of the quasi-linear electronic ground state were performed with the MRCI PEFs using the procedure of Carter and Handy [17] for $J = 0$ to 8. The basis set comprised 18 onedimensional harmonic oscillator eigenfunctions for the stretching and 40 associated Legendre functions for the bending modes. Some of the resulting vibrational transition energies and the spectroscopic constants are compared with available experimental data and previous theoretical values in Table 3. The equilibrium structure (basis set $[B_1]$) has been calculated to be 1.0294 Å and 152.07°. The augmentation of the one-particle basis set (basis set $[B_1]$ vs. $[B_2]$, cf. Table 3) hardly influenced the equilibrium geometry, but changed the shape of the PEF, particularly along the stretching coordinates. The experimental v_3 band origin of 3359.932 cm⁻¹ [3] lies between our values calculated with the basis sets $[B_1]$ (3368.7 cm^{-1}) and $[B_2]$ (3353.4 cm^{-1}) . Similarly, the energy differences calculated for the hot bands with the large basis set $[B_1]$ are all higher by about 8 to 10 cm⁻¹ than the experimental values. Our equilibrium distance is slightly shorter and the equilibrium angle smaller than the values calculated by Jensen et al. [1] (cf. Table 3). The barrier to linearity of 260 cm⁻¹ is larger by 51 cm⁻¹ than their value. Jensen et al. [11 have empirically adjusted the values for the fundamental vibrational transitions for $v_1 = 3118 \text{ cm}^{-1}$, $v_2 = 918 \text{ cm}^{-1}$, and $v_3 = 3363$ cm⁻¹, respectively. Our stretching wavenumbers are somewhat larger and the bending wavenumber lower than these values. Their calculated values are given in Table 3.

In Table 4 we have compared some rotation-bending levels calculated by Jensen et al. [1] with the values obtained with the PEF given in Table 1. Our, probably more precise values, are lower due to the flatter PEF along the bending coordinate. The pattern of the bending levels up to 10000 cm^{-1} with different

X^3B_1		This work	Ref. $\lceil 1 \rceil$	Ref. $[4]$
	$[B_1]^a$	$[B_2]^{\rm a}$		
$R_e(\text{\AA})$	1.029	1.030	1.0338	
$\alpha_e(^\circ)$	152.07	151.76	153.17	
$10^{0}0-00^{0}0$ (cm ^{-1)b}	3128.4	3116.8	3102	
$02^00 - 00^00$ (cm ⁻¹)	913.7	909.3	922	
$00^01 - 00^00$ (cm ⁻¹)	3368.7	3354.7	3344	3359.934°
10^{0} 1-10 ⁰ 0(cm ⁻¹)	3234.8	3222.1		3226.037
$20^01 - 20^00$ (cm ⁻¹)	3091.0	3080.3		3081.548
01^{1} 1-01 ¹ 0(cm ⁻¹)	3354.9	3340.4		3344.928
$1111-1110$ (cm ⁻¹)	3221.4	3207.5		3211.341
$02^01 - 02^00$ (cm ⁻¹)	3341.8	3326.9		3331.150
Rotational constants				
$A_e(\text{cm}^{-1})$	155.08	152.71		
B_e (cm ⁻¹)	8.38	8.37		
C_e (cm ⁻¹)	7.95	7.93		
Barrier to linearity $(cm-1)$	260	270	209	

Table 3. Spectroscopic parameters of the X^3B_1 electronic ground state of NH₂⁺

^a MRCI results calculated with the basis sets $[B_1]$ and $[B_2]$, cf. text.

^b the theoretical transition energies are the energy differences between the corresponding lowest $K_a = 0$ or $K_a = 1$ levels in the bent notation (cf. Table 5).

° vibrational band origins from the fits to the observed transitions

$v_2^{l\,a}$	$v_2^{\rm b}$	K_a	\boldsymbol{N}	NH ₂ This work	Ref. $\lceil 1 \rceil$	NHD^+ This work	Ref. $\lceil 1 \rceil$	ND_2^+ This work	Ref. $\lceil 1 \rceil$
$0^{\rm o}$	$\mathbf 0$	$\bf{0}$	0	0.00	0.00	0.00	0.00	0.00	0.00
		0	1	15.95	15.80	10.87	10.76	8.03	7.95
		$\bf{0}$	\overline{c}	47.86	47.40	32.60	32.28	24.09	23.84
1 ¹			1	319.12	328.44	256.60	266.38	189.50	199.41
			$\overline{2}$	350.78	359.80	278.21	287.79	205.49	215.24
2 ²		2	2	759.90	775.45	621.08	637.35	468.68	485.18
3 ³		3	3	1283.83	1302.94	1059.62	1079.89	808.64	829.54
4 ⁴		4	4	1872.55	1893.46	1556.07	1578.71	1195.69	1219.56
2 ⁰	1	$\mathbf{0}$	$\mathbf 0$	913.66	922.45	764.41	772.11	602.57	608.29
		0	1	929.81	938.49	775.38	783.01	610.68	616.33
		0	2	962.10	970.56	797.35	804.20	626.89	632.42
3 ¹				1473.91	1481.55	.1231.23	1240.03	966.47	975.79
			\overline{c}	1505.52	1512.88	1252.84	1261.45	982.47	991.65
4 ²		$\overline{2}$	\overline{c}	2074.39	2085.40	1734.57	1747.54	1360.60	1374.87
4 ⁰	$\overline{2}$	0	$\bf{0}$	2146.75	2161.93	1801.81	1816.83	1424.38	1438.12
		0	1	2163.09	2178.17	1812.91	1827.85	1432.59	1446.27
		0	2	2195.79	2210.67	1835.12	1849.91	1449.00	1462.57

Table 4. Comparison of rotational-vibrational levels in the electronic ground state X^3B_1 of NH₂, NHD⁺, and ND⁺ (in cm⁻¹)

^a linear notation

b bent notation

 K_a values is displayed in Fig. 2. For $K_a = 0$ one clearly recognizes the inverse anharmonicity in the bending levels, the energy differences increase with increasing bending quanta. The quasi-linearity leads to the inversion of some levels relative to their positions in linear molecules. For example, in bent notation, the $v₂ = 1$, $K_a = 0$ level lies in NH₂⁺ above the $v_2 = 0$, $K_a = 2$ level, etc. (cf. Fig. 2).

In Table 5 additional vibrational levels for energies up to about 7000 cm^{-1} and up to $K_a = 3$ are given. Since the NH₂ ion has been produced in various excited vibrational levels, such data could prove useful in the search for additional transitions needed for a better characterization of the quasi-linear nature of the electronic ground state.

The three-dimensional nuclear motion eigenfunctions have been used together with the *ab initio* calculated electric dipole moment functions in the evaluation of absolute line intensities for transitions up to $J = 8$ (cf. Ref. [18] for details of the method used in the calculations). The splittings due to the electron spin have been neglected, but the nuclear spin statistical weights have been considered. In Table 6 the most intense lines within the P_{τ} , Q_{τ} and R-branches for the fundamental absorption transitions at 300 K are given and the rotationally resolved spectra for transitions up to $J' = 8$ are displayed in Figs. 3 to 6. Even though the PEF is not accurate enough to describe the rotational - vibrational coupling very precisely (vibrational term values are accurate to within about 10 cm^{-1}), the following holds. The P- and R-transitions of the antisymmetric stretching mode are more intense by far than those of the symmetric stretching and bending modes. This could explain why only the antisymmetric stretching mode, and not the bending mode or the symmetric stretching mode, has been detected experimentally, even though both

State	$K_a=0$	State	$K_a = 1$	State	$K_a = 2$	State	$K_a = 3$
(000)	0.0	(000)	319.1	(000)	759.9	(000)	1283.8
(010)	913.7	(010)	1473.9	(010)	2074.4	(010)	2717.5
(0 2 0)	2146.7	(0 2 0)	2831.5	(0 2 0)	3535.9	(0 2 0)	4263.7
(100)	3128.4	(100)	3447.5	(100)	3885.9	(100)	4406.9
(001)	3368.7	(001)	3674.0	(001)	4100.0	(001)	4608.5
(030)	3576.2	(030)	4337.4	(030)	5106.1	(110)	5811.5
(110)	4034.9	(110)	4592.1	(110)	5194.8	(030)	5918.8
(011)	4255.5	(011)	4799.7	(011)	5384.4	(011)	6011.6
(0 4 0)	5131.8	(1 2 0)	5906.1	(1 2 0)	6618.4	(1 2 0)	7338.8
(1 2 0)	5262.8	(0 4 0)	5984.2	(0 4 0)	6797.4	(200)	7451.7
(021)	5457.5	(0 2 1)	6126.4	(0 2 1)	6814.8	(0 2 1)	7524.9
(200)	6178.9	(200)	6497.5	(200)	6933.3	(101)	7601.9
(1 0 1)	6363.2	(1 0 1)	6668.9	(1 0 1)	7093.7	(0 4 0)	7635.3
(130)	6654.3	(002)	6958.8	(002)	7371.8	(002)	7866.5
(002)	6665.1	(130)	7408.2	(130)	8157.0	(210)	8832.2
(0.50)	6813.7	(031)	7600.6	(210)	8240.8	(111)	8978.2
(031)	6855.7	(210)	7630.5	(111)	8335.4	(130)	8979.5
(210)	7077.7	(0.50)	7672.2	(031)	8392.3	(031)	9148.2
(111)	7243.7	(111)	7786.3	(0 5 0)	8539.5	(012)	9240.8

Table 5. Calculated rotational-vibrational levels for low-lying states in the electronic ground state of NH_2^+ (in cm⁻¹)

	J^{\prime}	K_a'		$J^{\prime\prime}$	K''_a	ΔE \lceil cm ⁻¹	Line intensity $\lceil \text{atm}^{-1} \text{cm}^{-2} \text{ at } 300 \text{ K} \rceil$	R^2 [in a.u. ²]
		vibrational band 100–000						
P	3			4	$\bf{0}$	3365.8	4.5	$0.6364 - 1$
Q	4	-1		4	$\bf{0}$	3433.9	5.5	$0.1525 + 0$
R	5	1		4	θ	3505.8	10.4	$0.9178 - 1$
		vibrational band 010–000						
P	$\overline{2}$	0		-3	0	563.8	12.4	$0.4330 - 1$
Q	4	$\bf{0}$		4	Ω	608.4	23.2	$0.1593 - 1$
R	6	Ω		5	Ω	712.2	11.8	$0.5762 - 1$
		vibrational band 001-000						
P	3	0		4	Ω	3302.8	166.5	$0.1160 - 2$
Q	$\mathbf{1}$	1	$\overline{}$	1	1	3355.5	28.9	$0.1367 - 2$
R	5	Ω		4	$\bf{0}$	3443.1	231.0	$0.2538 - 2$

Table 6. Absolute absorption line intensities^a (in bent notation) for the most intense lines of the fundamental transitions in the X^3B_1 electronic ground state of NH⁺

^a From the dipole transition matrix elements R^2 (in a.u.²; since it is calculated from the ro-vibrational wavefunctions exactly, they include already the Honl-London and the $2J + 1$ degeneracy factors), the individual line intensities were calculated (cf. Ref. [18]) from the formula:

$$
S_i = 3054.6
$$
 g_{NS} $v_i R^2$ exp $(-E_r/kT)$ [1 - exp $(-v_i/kT$]/(TQ_r)

where S_i is in cm⁻² atm⁻¹, T is the temperature in K, g_{NS} is the nuclear spin statistical weight (1 or 3), v_i is the transition frequency in cm⁻¹, R^2 is the squared dipole transition matrix element in D^2 (including already the degeneracy factor), E_r is the energy of the rotational levels in cm⁻¹, k is the Boltzmann constant, and Q_r , the purely rotational partition function, which has been calculated from the formula $Q_r = \sum g_{NS}(2J + 1)exp(-E_r/kT)$ for 300 K and $J \leq 10$ to be 79.

stretching modes overlap strongly in the experimentally investigated region between 3500 and 2900 cm-1. Moreover, the symmetric stretching mode shows strong intensity anomalies due to the strong rotational-vibrational coupling. For this reason, as in H_2S [19], the *P*-branch has been calculated to be distinctly less intense than the R-branch. Also the fact that no transition from $K_a = 2$ has been observed is - at least partly - due to very small transition probabilities, which were calculated to be 5 to 10 times weaker than those from $K_a = 1$ levels for the v_3 band.

5 Ro-vibronic spectrum of the a^1A_1 **and** b^1B_1 **states**

In Table 7 the spectroscopic constants for the $a¹A₁$ and $b¹B₁$ states obtained from the MRCI PEFs are given and compared with previous calculations. The $a¹A₁$ state is strongly bent, whereas the $b¹B₁$ state is quasi-linear. The barrier to linearity for the lower state has been calculated to be 5132 cm^{-1} , and for the upper state to be only 62 cm^{-1} . The equilibrium geometries, barriers to linearity and the excitation energies - apart from the bond angle of the upper state - agree well with the

	a^1A_1		b^1B_1				
$v_{2}^{\text{ bent}}$	$K_a=0$	$K_a = 1^a$	$v_{\,2}^{\,\mathrm{lin}}$	$K_a=0$	$K_a = 1^a$		
$\bf{0}$	0	33	$\overline{0}$	5688			
	1327	1363	1		6208		
\overline{c}	2593	2629	2	7093			
$\overline{\mathbf{3}}$	3789	3812	3		7649		
4	4921	4838	4	8642			
5	6031	5595	5		9458		
6	7179	6677	6	10310		╲	
7	8395	7956	7		11158		
8	9677	9008	8	12052			
9	11018	10345	9		12916		
10	12398 ^b	11722 ^b	10	13860			
11	14038 ^c	13121 ^c	11				

Table 8. Bending levels $(J = K_a)$ for the a^1A_1 and b^1B_1 states of NH⁺ $(in cm⁻¹)$

^a The mean value of the two K_c components is given

 b Fermi resonance with (1.80) level</sup>

 \degree Fermi resonance with (190) level

most accurate values so far of Jenssen et al. [1] (cf. Table 7). Our fundamental frequencies for the lower state are, however, generally higher by 20 to 40 cm⁻¹. The singlet-triplet separation ^{1,3} T_e has been calculated to be 10 193 cm⁻¹. The MRCI vertical excitation energy from the $a¹A₁$ state (at its equilibrium geometry) to the $b¹B₁$ state, amounts to 11 841 cm⁻¹.

The PEFs given in Table 1 were used in three-dimensional Renner-Teller variational calculations [20], in which the full dimensionality, anharmonicity, rotational-vibrational, and electronic angular momentum coupling effects have been taken into account. The basis set comprised 18 one-dimensional harmonic oscillator eigenfunctions for the stretching and 40 associated Legendre functions for the bending modes. Approximations were made for the electron angular momentum operators. The matrix elements $\langle a|L_z|b\rangle$, $\langle a|L_z^2|a\rangle$ and $\langle b|L_z^2|b\rangle$ were set to their values for a linear \varDelta state, i.e. their geometry dependence has not been considered. All other angular momentum matrix elements were omitted. The ro-vibronic spectrum has been evaluated for the energy region up to about 13 500 cm⁻¹ above the minimum energy of the $a¹A₁$ state. The bending levels for $K_a = 0$ (Σ states) and 1 (Π states) are given in Table 8. In a singlet electronic state the Σ levels can be fully associated with one or the other PEF, whereas for the \overline{I} states the Born–Oppenheimer approximation is no more valid. Such a vibronic bending level exhibits strong electron-nuclear motion coupling. On the other hand, the levels with excited stretching modes can $-$ to a large extent $-$ be associated with only one PEF. Hence, in the \overline{AH}_2 Renner-Teller systems relatively few vibronic levels (bending above the barrier, $K_a > 0$) are embedded in a manifold of vibrational levels for which the Born-Oppenheimer approximation holds relatively well. On the whole, up to 13 500 cm⁻¹, there are 46 symmetric (vibrational symmetry only), 28 antisymmetric, in the upper electronic states 12 symmetric and 6 antisymmetric Σ levels in NH $_2^+$. The bending levels of the lower singlet state exhibit normal

a^1A_1	This work		Ref. $\lceil 1 \rceil$	Ref. [8]
	$[B_1]^*$	$[B_2]^a$		
$R_e(\AA)$ $\alpha_e(^\circ)$	1.046 108.38	1.047 108.07	1.051 108.37	
v_1 v ₂ v_3	3050 1327 3133	3033 1332 3120	3027 1289 3111	
Rotational constants A_e (cm ⁻¹) B_e (cm ⁻¹) C_e (cm ⁻¹)	25.53 11.61 7.98	25.27 11.63 7.96		
Barrier to linearity $(cm-1)$ Excitation energy T_e (cm ⁻¹)	5132 10193	5373 10159	5071 10475	6200
b^1B_1	$[B_1]^a$	This work $[B_2]^a$	Ref. [1]	Ref. [8]
$R_e(\AA)$ $\alpha_e(^\circ)$	1.029 160.92	1.030 159.31	1.034 164.07	
v_1 $2v_2$ v_3	3083 1404 3304	3068 1401 3289		
Rotational constants A_e (cm ⁻¹) B_e (cm ⁻¹) C_e (cm ⁻¹)	329.04 8.12 7.92	279.50 8.14 7.91		
Barrier to linearity (cm ⁻¹) Excitation energy T_e (cm ⁻¹)	62 15263	98 15431	149 15397	220

Table 7. Spectroscopic parameters of the a^1A_1 and b^1B_1 states of NH₂⁺

^a MRCI results calculated with the basis sets $[B_1]$ and $[B_2]$

Fig. 1. One-dimensional cuts of the PEFs for the X^3B_1 , a^1A_1 and b^1B_1 states of NH₂⁺ along the bending coordinate α

Fig. 2. The pattern of bending levels (up to $K_a = 4$, bent notation) in the electronic ground state X^3B_1 of $NH₂⁺$

Fig. 3. The rotational 000–000 (bent notation) absorption band at 300 K for $J''=0$ to 8 in the electronic ground state X^3B_1 of NH₂⁺

Fig. 4. The symmetric stretching 100-000 (bent notation) absorption band at 300 K for $J'' = 0$ to 8 in the electronic ground state X^3B_1 of NH₂⁺

Fig. 5. The bending 010-000 (bent notation) absorption band at 300 K for $J'' = 0$ to 8 in the electronic ground state X^3B_1 of NH₂⁺

Fig. 6. The antisymmetric stretching 001-000 (bent notation) absorption band at 300 K for $J'' = 0$ to 8 in the electronic ground state X^3B_1 of NH_2^+

		a^1A_1				b^1B_1	
$(v_1v_2^{\mathrm{bent}}v_3)$		$(v_1v_2^{\text{bent}}v_3)$		$(v_1v_2^{\text{lin}}v_3)$		$(v_1v_2^{\text{lin}}v_3)$	
(100)	3050	(001)	3133	(100)	8771	(001)	8992
(110)	4368	(011)	4446	(120)	10138	(0 2 1)	10345
(1 2 0)	5621	(0 2 1)	5701	(140)	11654	(041)	11838
(200)	6008	(101)	6046	(200)	11770	(101)	11934
(002)	6227	(031)	6893	(002)	12221	(1 2 1)	13249
(130)	6807	(111)	7350	(220)	13100	(0 6 1)	13447
(210)	7315	(041)	8020				
(012)	7526	$(1\ 2\ 1)$	8594				
(140)	7933						
(220)	8557						
(0 2 2)	8770						
(300)	8849						

Table 9. Some stretching and combination levels ($K = 0$) for the $a¹A₁$ and $b¹B₁$ states of NH₂⁺ (in cm⁻¹)

anharmonicity, whereas those in the upper state show inverse anharmonicity-like in the electronic ground state.

As expected from the position of the barrier to linearity, the K_a reordering in the bending levels begins in $v_2 = 4$, for which the $K_a = 1$ level for the first time lies lower than the $K_a = 0$ level. In Table 9 additional stretching and combination Σ levels for both electronic states are given.

The only study of the Renner-Teller problem in the NH_2^+ has been performed by Peric, Buenker, and Peyerimhoff [8]. The vibronic bending levels deviate by more than 100 to 150 cm^{-1} from our results, and their energy difference between the lowest levels in the a^1A_1 and the b^1B_1 state by 624 cm⁻¹, due to the different values for the barriers to linearity (cf. Table 7).

Recently, we have investigated the ${}^2A_1 - {}^2B_1$ Renner-Teller system of the BH₂ radical [21] with almost identical linear spaces in the electronic structure calculations. After an empirical shift of the barrier to linearity in the ground state by $- 97$ cm⁻¹, all experimentally known vibronic energy differences have been reproduced with an accuracy of better than 6 cm^{-1} . Therefore, we expect that the bending Σ levels in the upper 1B_1 state of NH₂⁺ are calculated to be uniformly too high by about 100 to 150 cm⁻¹ relative to the lower lying singlet state. This also implies, however, that the bending levels of the lower singlet state above and close to the calculated barrier to linearity are not very accurate. For this reason we have given only the $K_a = 0$ and 1 levels in Table 8, since the Renner-Teller coupling will be strongly influenced by the position of this barrier. As for $BH₂$, the threedimensional PEFs given in Table 1 can be easily modified once experimental data for the bending levels become available. We expect that the calculated stretching frequencies in both singlet states have similar accuracy as in the ground state.

6 Conclusions

In this work high accuracy PEFs for three electronic states of the $NH₂⁺$ ion have been determined by electronic structure calculations. Rotational-vibrational energy levels and wavefunctions have been calculated for the quasi-linear ground state and the Renner-Teller bent/quasi-linear $a^1A_1 - b^1B_1$ system using the variational method. The few so far experimentally known vibrational transition energies in the electronic ground state have been reproduced with accuracy of about 10 cm⁻¹. More complete experimental information - particularly for the Renner-Teller system - is needed to improve the accuracy of the theoretical potential energy functions of NH_2^+ .

Acknowledgements. We would like to thank T. R. Huet, Y. Kabbadj, C. Gabrys, and T. Oka for providing us with experimental results prior to publication and for stimulating discussions, and to H.-J. Werner and P. J. Knowles for the access to the MOLPRO computer code. This work has been supported by the Deutsche Forschungsgemeinschaft, SFB92, Fonds der Chemischen Industrie, PROCOPE grant for German-French collaboration and the EC grant 89200159/OP1. The calculations were carried out on the CRAY YMP, HLRZ, Jülich, Germany.

References

- 1. Jensen P, Bunker PR, McLean AD (1987) Chem Phys Lett 141:53
- 2. Peyerimhoff SD, Buenker RJ (1979) Chem Phys 42:167
- 3. Okumura M, Rehfuss BD, Dinelli BM, Bawendi MG, Oka T (1989) J Chem Phys 90:5918
- 4. Huet TR, Kabbadj Y, Gabrys C, Oka T (1989) 47th Symp on Molecular Spectroscopy, Columbus, Ohio
- 5. Dunlavey SJ, Dyke JM, Jonathan N, Morris A (1980) Mol Phys 39:1121
- 6. Herzberg G (1983) in: Miller TA, Bondybey VE (eds) Molecular ions: Spectroscopy, structure and chemistry. North-Holland
- 7. Green WH, Chen IC, Bitto H, Guyer DR, Moore CB (1989) J Mol Spectr 138:614
- 8. Peric M, Buenker RJ, Peyerimhoff SD (1984) Astrophys Lett 24:69
- 9. DeFrees DJ, McLean AD (1985) J Chem Phys 82:333
- 10. Green WH, Handy NC, Knowles PJ, Carter S (1991) J Chem Phys 94:118
- 11. Dunning TH, (1989) J Chem Phys 90:1007
- 12. Werner HJ, Knowles PJ (1985) J Chem Phys 82:5053
- 13. Knowles PJ, Werner HJ (1985) Chem Phys Lett 115:259
- 14. Werner HJ, Knowles PJ (1988) J Chem Phys 89:5803
- 15. Knowles PJ, Werner HJ (1988) Chem Phys Lett 145:514
- 16. The CASSCF calculations have been performed with the MOLPRO program suite written by Werner HJ, Knowles PJ, with contributions of Almlöf J, Amos RD, Elbert ST, Meyer W, Reinsch EA, Pitzer RM, Stone AJ, Taylor PR
- 17. Carter S, Handy NC (1984) Mol Phys 52:1367
- 18. Carter S, Senekowitsch J, Handy NC, Rosmus P (1988) Mol Phys 65:143
- 19. Senekowitsch J, Zilch A, Carter S, Werner HJ, Handy NC, Rosmus P (1989) J Chem Phys 90:783
- 20. Carter S, Handy NC, Rosmus P, Chambaud G (1990) Mol Phys 71:605
- 21. Brommer M, Rosmus P, Carter S, Handy NC (1992) Mol Phys 77:549